Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1280546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125008

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease caused by a trinucleotide (CAG) repeat expansion in the ATXN1 gene. It is characterized by the presence of polyglutamine (polyQ) intranuclear inclusion bodies (IIBs) within affected neurons. In order to investigate the impact of polyQ IIBs in SCA1 pathogenesis, we generated a novel protein aggregation model by inducible overexpression of the mutant ATXN1(Q82) isoform in human neuroblastoma SH-SY5Y cells. Moreover, we developed a simple and reproducible protocol for the efficient isolation of insoluble IIBs. Biophysical characterization showed that polyQ IIBs are enriched in RNA molecules which were further identified by next-generation sequencing. Finally, a protein interaction network analysis indicated that sequestration of essential RNA transcripts within ATXN1(Q82) IIBs may affect the ribosome resulting in error-prone protein synthesis and global proteome instability. These findings provide novel insights into the molecular pathogenesis of SCA1, highlighting the role of polyQ IIBs and their impact on critical cellular processes.

2.
Cells ; 12(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37508541

RESUMO

Mutations in a broad variety of genes can provoke the severe childhood disorder trichothiodystrophy (TTD) that is classified as a DNA repair disease or a transcription syndrome of RNA polymerase II. In an attempt to identify the common underlying pathomechanism of TTD we performed a knockout/knockdown of the two unrelated TTD factors TTDN1 and RNF113A and investigated the consequences on ribosomal biogenesis and performance. Interestingly, interference with these TTD factors created a nearly uniform impact on RNA polymerase I transcription with downregulation of UBF, disturbed rRNA processing and reduction of the backbone of the small ribosomal subunit rRNA 18S. This was accompanied by a reduced quality of decoding in protein translation and the accumulation of misfolded and carbonylated proteins, indicating a loss of protein homeostasis (proteostasis). As the loss of proteostasis by the ribosome has been identified in the other forms of TTD, here we postulate that ribosomal dysfunction is a common underlying pathomechanism of TTD.


Assuntos
Síndromes de Tricotiodistrofia , Humanos , Criança , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Mutação/genética , RNA Polimerase I/metabolismo , Proteínas/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
Bioessays ; 45(7): e2200230, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194995

RESUMO

Neurodegenerative syndromes present as proteinopathies - does ribosomal infidelity contribute to the protein toxicity that is the driving force for neuronal cell loss? Intracellular and extracellular protein aggregates overwhelm the clearance capacity of cells and tissues. Proteins aggregate when hydrophobic residues are exposed. Hydrophobic residues become exposed when proteins are misfolded. Protein misfolding can originate from translational errors at the ribosome. Indeed, the most error-prone process in gene expression is translation at the ribosome. Recent evidence indicates that manipulating the ribosomal accuracy impacts on the lifespan of model organisms and a reduced translational accuracy is accompanied by neurodegeneration. The first hit in aging-associated neurodegenerative disease may be the well-documented decline of cellular buffering capacity by aging. A second hit that impacts on the quality of protein synthesis could be the driving force for the observed loss of proteostasis in neurodegeneration. This hypothesis provides an explanation for the late onset of most neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Ribossomos/metabolismo , Proteínas/metabolismo , Proteostase , Longevidade
4.
Hum Mol Genet ; 32(7): 1102-1113, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36308430

RESUMO

TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.


Assuntos
Síndromes de Tricotiodistrofia , Xeroderma Pigmentoso , Humanos , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Reparo do DNA/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia , Mutação , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/patologia , Ribossomos/genética , Ribossomos/metabolismo
5.
Cancers (Basel) ; 14(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35565334

RESUMO

Aberrant replication stress (RS) is a source of genome instability and has serious implications for cell survival and tumourigenesis. Therefore, the detection of RS and the identification of the underlying molecular mechanisms are crucial for the understanding of tumourigenesis. Currently, three protein markers-p33-phosphorylated replication protein A2 (pRPA2), γ-phosphorylated H2AX (γ-H2AX), and Tumor Protein P53 Binding Protein 1 (53BP1)-are frequently used to detect RS. However, to our knowledge, there is no report that compares their suitability for the detection of different sources of RS. Therefore, in this study, we evaluate the suitability of pRPA2, γ-H2AX, and 53BP1 for the detection of RS caused by different sources of RS. In addition, we examine their suitability as markers of the telomerase-mediated alleviation of RS. For these purposes, we use here telomerase-negative human fibroblasts (BJ) and their telomerase-immortalized counterparts (BJ-hTERT). Replication stress was induced by the ectopic expression of the oncogenic RAS mutant RASG12V (OI-RS), by the knockdown of ploidy-control genes ORP3 or MAD2 (AI-RS), and by treatment with hydrogen peroxide (ROS-induced RS). The level of RS was determined by immunofluorescence staining for pRPA2, γ-H2AX, and 53BP1. Evaluation of the staining results revealed that pRPA2- and γ-H2AX provide a significant and reliable assessment of OI-RS and AI-RS compared to 53BP1. On the other hand, 53BP1 and pRPA2 proved to be superior to γ-H2AX for the evaluation of ROS-induced RS. Moreover, the data showed that among the tested markers, pRPA2 is best suited to evaluate the telomerase-mediated suppression of all three types of RS. In summary, the data indicate that the choice of marker is important for the evaluation of RS activated through different conditions.

7.
Nucleic Acids Res ; 49(19): 11197-11210, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34581812

RESUMO

Ribosome biogenesis is a highly energy-demanding process in eukaryotes which requires the concerted action of all three RNA polymerases. In RNA polymerase II transcription, the general transcription factor TFIIH is recruited by TFIIE to the initiation site of protein-coding genes. Distinct mutations in TFIIH and TFIIE give rise to the degenerative disorder trichothiodystrophy (TTD). Here, we uncovered an unexpected role of TFIIE in ribosomal RNA synthesis by RNA polymerase I. With high resolution microscopy we detected TFIIE in the nucleolus where TFIIE binds to actively transcribed rDNA. Mutations in TFIIE affects gene-occupancy of RNA polymerase I, rRNA maturation, ribosomal assembly and performance. In consequence, the elevated translational error rate with imbalanced protein synthesis and turnover results in an increase in heat-sensitive proteins. Collectively, mutations in TFIIE-due to impaired ribosomal biogenesis and translational accuracy-lead to a loss of protein homeostasis (proteostasis) which can partly explain the clinical phenotype in TTD.


Assuntos
Nucléolo Celular/genética , Regulação da Expressão Gênica , Biogênese de Organelas , Fator de Transcrição TFIIH/genética , Fatores de Transcrição TFII/genética , Síndromes de Tricotiodistrofia/genética , Linhagem Celular Transformada , Nucléolo Celular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes Reporter , Temperatura Alta , Humanos , Luciferases/genética , Luciferases/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Estabilidade Proteica , Proteostase/genética , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/deficiência , Transcrição Gênica , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patologia
8.
Nucleic Acids Res ; 49(19): 10911-10930, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34581821

RESUMO

CSA and CSB proteins are key players in transcription-coupled nucleotide excision repair (TC-NER) pathway that removes UV-induced DNA lesions from the transcribed strands of expressed genes. Additionally, CS proteins play relevant but still elusive roles in other cellular pathways whose alteration may explain neurodegeneration and progeroid features in Cockayne syndrome (CS). Here we identify a CS-containing chromatin-associated protein complex that modulates rRNA transcription. Besides RNA polymerase I (RNAP1) and specific ribosomal proteins (RPs), the complex includes ferrochelatase (FECH), a well-known mitochondrial enzyme whose deficiency causes erythropoietic protoporphyria (EPP). Impairment of either CSA or FECH functionality leads to reduced RNAP1 occupancy on rDNA promoter that is associated to reduced 47S pre-rRNA transcription. In addition, reduced FECH expression leads to an abnormal accumulation of 18S rRNA that in primary dermal fibroblasts from CS and EPP patients results in opposed rRNA amounts. After cell irradiation with UV light, CSA triggers the dissociation of the CSA-FECH-CSB-RNAP1-RPs complex from the chromatin while it stabilizes its binding to FECH. Besides disclosing a function for FECH within nucleoli, this study sheds light on the still unknown mechanisms through which CSA modulates rRNA transcription.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Ferroquelatase/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase I/genética , RNA Ribossômico/genética , Fatores de Transcrição/genética , Linhagem Celular Transformada , Sobrevivência Celular , Imunoprecipitação da Cromatina , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Ferroquelatase/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Raios Ultravioleta
9.
Cells ; 10(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203326

RESUMO

Cockayne syndrome (CS) is a developmental disorder with symptoms that are typical for the aging body, including subcutaneous fat loss, alopecia, and cataracts. Here, we show that in the cells of CS patients, RNA polymerase I transcription and the processing of the pre-rRNA are disturbed, leading to an accumulation of the 18S-E intermediate. The mature 18S rRNA level is reduced, and isolated ribosomes lack specific ribosomal proteins of the small 40S subunit. Ribosomal proteins are susceptible to unfolding and the CS cell proteome is heat-sensitive, indicating misfolded proteins and an error-prone translation process in CS cells. Pharmaceutical chaperones restored impaired cellular proliferation. Therefore, we provide evidence for severe protein synthesis malfunction, which together with a loss of proteostasis constitutes the underlying pathophysiology in CS.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Mutação/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Dobramento de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Fatores de Transcrição/genética , Proliferação de Células , Síndrome de Cockayne/patologia , Temperatura Alta , Humanos , Estabilidade Proteica , RNA Polimerase I/genética , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/genética , Transcrição Gênica
10.
Leukemia ; 34(5): 1253-1265, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31768018

RESUMO

MicroRNAs (miRNAs) are commonly deregulated in acute myeloid leukemia (AML), affecting critical genes not only through direct targeting, but also through modulation of downstream effectors. Homeobox (Hox) genes balance self-renewal, proliferation, cell death, and differentiation in many tissues and aberrant Hox gene expression can create a predisposition to leukemogenesis in hematopoietic cells. However, possible linkages between the regulatory pathways of Hox genes and miRNAs are not yet fully resolved. We identified miR-708 to be upregulated in Hoxa9/Meis1 AML inducing cell lines as well as in AML patients. We further showed Meis1 directly targeting miR-708 and modulating its expression through epigenetic transcriptional regulation. CRISPR/Cas9 mediated knockout of miR-708 in Hoxa9/Meis1 cells delayed disease onset in vivo, demonstrating for the first time a pro-leukemic contribution of miR-708 in this context. Overexpression of miR-708 however strongly impeded Hoxa9 mediated transformation and homing capacity in vivo through modulation of adhesion factors and induction of myeloid differentiation. Taken together, we reveal miR-708, a putative tumor suppressor miRNA and direct target of Meis1, as a potent antagonist of the Hoxa9 phenotype but an effector of transformation in Hoxa9/Meis1. This unexpected finding highlights the yet unexplored role of miRNAs as indirect regulators of the Hox program during normal and aberrant hematopoiesis.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , Células Mieloides/patologia , Proteína Meis1/metabolismo , Animais , Apoptose , Sistemas CRISPR-Cas , Diferenciação Celular , Proliferação de Células , Feminino , Hematopoese , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Células Mieloides/metabolismo , Proteína Meis1/genética , Células Tumorais Cultivadas
12.
Cells ; 8(6)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167386

RESUMO

The nucleolus organizes around the sites of transcription by RNA polymerase I (RNA Pol I). rDNA transcription by this enzyme is the key step of ribosome biogenesis and most of the assembly and maturation processes of the ribosome occur co-transcriptionally. Therefore, disturbances in rRNA transcription and processing translate to ribosomal malfunction. Nucleolar malfunction has recently been described in the classical progeria of childhood, Hutchinson-Gilford syndrome (HGPS), which is characterized by severe signs of premature aging, including atherosclerosis, alopecia, and osteoporosis. A deregulated ribosomal biogenesis with enlarged nucleoli is not only characteristic for HGPS patients, but it is also found in the fibroblasts of "normal" aging individuals. Cockayne syndrome (CS) is also characterized by signs of premature aging, including the loss of subcutaneous fat, alopecia, and cataracts. It has been shown that all genes in which a mutation causes CS, are involved in rDNA transcription by RNA Pol I. A disturbed ribosomal biogenesis affects mitochondria and translates into ribosomes with a reduced translational fidelity that causes endoplasmic reticulum (ER) stress and apoptosis. Therefore, it is speculated that disease-causing disturbances in the process of ribosomal biogenesis may be more common than hitherto anticipated.


Assuntos
Nucléolo Celular/metabolismo , Progéria/patologia , Ribossomos/metabolismo , Senilidade Prematura , Nucléolo Celular/genética , Criança , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Estresse do Retículo Endoplasmático , Humanos , Mitocôndrias/metabolismo , Progéria/genética , Progéria/metabolismo , RNA Polimerase I/metabolismo , Ribossomos/genética
13.
Cell Rep ; 23(6): 1612-1619, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742419

RESUMO

Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription. This pathomechanism can be disrupted by the addition of pharmacological chaperones, suggesting a treatment strategy for CS. Additionally, this loss of proteostasis was not observed in mouse models of CS.


Assuntos
Síndrome de Cockayne/patologia , Proteostase , Animais , Linhagem Celular , Síndrome de Cockayne/genética , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Mutação/genética , Estresse Oxidativo , Biossíntese de Proteínas , Dobramento de Proteína , RNA Polimerase I/genética , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia
14.
Sci Rep ; 7(1): 8513, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819135

RESUMO

PGC-1α is a versatile inducer of mitochondrial biogenesis and responsive to the changing energy demands of the cell. As mitochondrial ATP production requires proteins that derive from translation products of cytosolic ribosomes, we asked whether PGC-1α directly takes part in ribosomal biogenesis. Here, we show that a fraction of cellular PGC-1α localizes to the nucleolus, the site of ribosomal transcription by RNA polymerase I. Upon activation PGC-1α associates with the ribosomal DNA and boosts recruitment of RNA polymerase I and UBF to the rDNA promoter. This induces RNA polymerase I transcription under different stress conditions in cell culture and mouse models as well as in healthy humans and is impaired already in early stages of human Huntington's disease. This novel molecular link between ribosomal and mitochondrial biogenesis helps to explain sarcopenia and cachexia in diseases of neurodegenerative origin.


Assuntos
Doença de Huntington/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Ribossômico/biossíntese , Transcrição Gênica , Adulto , Idoso , Animais , Biópsia , Células Cultivadas , DNA/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase I/metabolismo , Adulto Jovem
15.
PLoS One ; 12(6): e0179843, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28636660

RESUMO

The nucleolus has long been considered to be a pure ribosome factory. However, over the last two decades it became clear that the nucleolus is involved in numerous other functions besides ribosome biogenesis. Our experiments indicate that the activity of RNA polymerase I (Pol I) transcription monitors the integrity of the DNA and influences the response to nucleolar stress as well as the rate of survival. Cells with a repressed ribosomal DNA (rDNA) transcription activity showed an increased and prolonged p53 stabilisation after UVC-irradiation. Furthermore, p53 stabilisation after inhibition and especially after UVC-irradiation might be due to abrogation of the HDM2-p53 degradation pathway by ribosomal proteins (RPs). Apoptosis mediated by highly activated p53 is a typical hallmark of Cockayne syndrome cells and transcriptional abnormalities and the following activation of the RP-HDM2-p53 pathway would be a possible explanation.


Assuntos
RNA Polimerase I/metabolismo , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta , Apoptose/efeitos da radiação , Linhagem Celular , Células HCT116 , Humanos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/antagonistas & inibidores , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Estabilidade Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , RNA Polimerase I/genética , RNA Ribossômico/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
16.
Nat Commun ; 5: 4599, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25118183

RESUMO

In addition to performing its canonical function, Telomerase Reverse Transcriptase (TERT) has been shown to participate in cellular processes independent of telomerase activity. Furthermore, although TERT mainly localizes to Cajal bodies, it is also present within the nucleolus. Because the nucleolus is the site of rDNA transcription, we investigated the possible role of telomerase in regulating RNA polymerase I (Pol I). Here we show that TERT binds to rDNA and stimulates transcription by Pol I during liver regeneration and Ras-induced hyperproliferation. Moreover, the inhibition of telomerase activity by TERT- or TERC-specific RNA interference, the overexpression of dominant-negative-TERT, and the application of the telomerase inhibitor imetelstat reduce Pol I transcription and the growth of tumour cells. In vitro, telomerase can stimulate the formation of the transcription initiation complex. Our results demonstrate how non-canonical features of telomerase may direct Pol I transcription in oncogenic and regenerative hyperproliferation.


Assuntos
Proliferação de Células/fisiologia , DNA Ribossômico/genética , DNA Ribossômico/fisiologia , RNA Polimerase I/fisiologia , Telomerase/fisiologia , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Humanos , Rim/citologia , Fígado/citologia , Regeneração Hepática/genética , Regeneração Hepática/fisiologia , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/citologia , Ligação Proteica/fisiologia , RNA Polimerase I/genética , Coelhos , Telomerase/genética , Transcrição Gênica/genética
17.
Cell Cycle ; 13(13): 2029-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24781187

RESUMO

Mutations in the Cockayne syndrome A (CSA) protein account for 20% of Cockayne syndrome (CS) cases, a childhood disorder of premature aging and early death. Hitherto, CSA has exclusively been described as DNA repair factor of the transcription-coupled branch of nucleotide excision repair. Here we show a novel function of CSA as transcription factor of RNA polymerase I in the nucleolus. Knockdown of CSA reduces pre-rRNA synthesis by RNA polymerase I. CSA associates with RNA polymerase I and the active fraction of the rDNA and stimulates re-initiation of rDNA transcription by recruiting the Cockayne syndrome proteins TFIIH and CSB. Moreover, compared with CSA deficient parental CS cells, CSA transfected CS cells reveal significantly more rRNA with induced growth and enhanced global translation. A previously unknown global dysregulation of ribosomal biogenesis most likely contributes to the reduced growth and premature aging of CS patients.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , RNA Polimerase I/metabolismo , Ribossomos/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase I/genética , Precursores de RNA/biossíntese , Precursores de RNA/metabolismo , RNA Ribossômico/biossíntese , RNA Ribossômico/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
18.
Int J Cancer ; 132(9): 2032-43, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23023397

RESUMO

Telomerase is activated in the majority of invasive breast cancers, but the time point of telomerase activation during mammary carcinogenesis is not clear. We have recently presented a transgenic mouse model to study human telomerase reverse transcriptase (TERT) gene expression in vivo (hTERTp-lacZ). In the present study, hTERTp-lacZxWAP-T bitransgenic mice were generated to analyze the mechanisms responsible for human and mouse TERT upregulation during tumor progression in vivo. We found that telomerase activity and TERT expression were consistently upregulated in SV40-induced invasive mammary tumors compared to normal and hyperplastic tissues and ductal carcinoma in situ (DCIS). Human and mouse TERT genes are regulated similarly in the breast tissue, involving the CEBP transcription factors. Loss of CEBP-α and induction of CEBP-ß expression correlated well with the activation of TERT expression in mouse mammary tumors. Transfection of CEBP-α into human or murine cells resulted in TERT repression, whereas knockdown of CEBP-α in primary human mammary epithelial cells resulted in reactivation of endogenous TERT expression and telomerase activity. Conversely, ectopic expression of CEBP-ß activated endogenous TERT gene expression. Moreover, ChIP and EMSA experiments revealed binding of CEBP-α and CEBP-ß to human TERT-promoter. This is the first evidence indicating that CEBP-α and CEBP-ß are involved in TERT gene regulation during carcinogenesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Mamárias Experimentais/patologia , Proteínas do Leite/genética , Regiões Promotoras Genéticas/genética , Telomerase/genética , Animais , Western Blotting , Proteínas Estimuladoras de Ligação a CCAAT/genética , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telomerase/metabolismo , Ativação Transcricional , Células Tumorais Cultivadas
19.
Nucleic Acids Res ; 40(2): 650-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21965540

RESUMO

TFIIH is a multisubunit factor essential for transcription initiation and promoter escape of RNA polymerase II and for the opening of damaged DNA double strands in nucleotide excision repair (NER). In this study, we have analyzed at which step of the transcription cycle TFIIH is essential for transcription by RNA polymerase I. We demonstrate that TFIIH associates with the rDNA promoter and gene-internal sequences and leaves the rDNA promoter in a complex with RNA polymerase I after start of transcription. Moreover, mutations in the TFIIH subunits XPB and XPD found in Cockayne syndrome impair the interaction of TFIIH with the rDNA, but do not influence initiation complex formation or promoter escape of RNA polymerase I, but preclude the productivity of the enzyme by reducing transcription elongation in vivo and in vitro. Our results implicate that reduced RNA polymerase I transcription elongation and ribosomal stress could be one factor contributing to the Cockayne syndrome phenotype.


Assuntos
RNA Polimerase I/metabolismo , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Células Cultivadas , Síndrome de Cockayne/genética , DNA Helicases/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Imunoprecipitação , Mutação , Regiões Promotoras Genéticas , Fator de Transcrição TFIIH/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
20.
Aging Cell ; 10(2): 239-54, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21108731

RESUMO

The free radical theory of aging postulates that the production of mitochondrial reactive oxygen species is the major determinant of aging and lifespan. Its role in aging of the connective tissue has not yet been established, even though the incidence of aging-related disorders in connective tissue-rich organs is high, causing major disability in the elderly. We have now addressed this question experimentally by creating mice with conditional deficiency of the mitochondrial manganese superoxide dismutase in fibroblasts and other mesenchyme-derived cells of connective tissues in all organs. Here, we have shown for the first time that the connective tissue-specific lack of superoxide anion detoxification in the mitochondria results in reduced lifespan and premature onset of aging-related phenotypes such as weight loss, skin atrophy, kyphosis (curvature of the spine), osteoporosis and muscle degeneration in mutant mice. Increase in p16(INK4a) , a robust in vivo marker for fibroblast aging, may contribute to the observed phenotype. This novel model is particularly suited to decipher the underlying mechanisms and to develop hopefully novel connective tissue-specific anti-aging strategies.


Assuntos
Envelhecimento/fisiologia , Tecido Conjuntivo/enzimologia , Longevidade/fisiologia , Mitocôndrias/enzimologia , Fenótipo , Superóxido Dismutase/deficiência , Animais , Biomarcadores/metabolismo , Osso e Ossos/patologia , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Cifose , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Espécies Reativas de Oxigênio/metabolismo , Pele/patologia , Superóxido Dismutase/genética , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...